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Abstract
The problem of phonon scattering by static strain fields due to biaxial wedge
disclination dipoles (WDDs) of finite length and circular wedge disclination
loops (WDLs) is studied in the framework of the deformation potential
approach. The specific behaviour of the thermal conductivity, κ , is found for
both defects. In particular, for WDDs the crossover from T 2 to T is predicted
at low temperatures. For circular WDLs, κ(T ) exhibits a minimum at some
temperature T ∗ in the low-temperature range. Above T ∗ κ ∼ T 2 (dislocation-
like behaviour), while below T ∗, one finds κ ∼ T −3.

1. Introduction

The role of dislocations in electron transport in semiconductors is widely recognized now
(see, e.g., [1]). Dislocations serve as effective scattering centres for conducting electrons,
thus resulting in a dislocation-induced contribution to the transport characteristics [2]. In
contrast, the contribution to the conductivity in semiconductors due to rotational dislocations
(disclinations) is not yet well understood. At the same time, the theoretical consideration
proposed in [3, 4] shows the importance of disclinations in semiconductors.

Some aspects of the electron scattering due to straight wedge disclinations have been
considered in [5] where a noticeable difference between the electronic properties of dislocations
and disclinations was found—namely, while dislocations can grasp electrons on the localized
levels in the core region, for negative disclinations only resonance-like electron states can
exist. Also, the behaviour of the residual resistivity in simple metals caused by arrays of
wedge disclinations was investigated in [6] (as a function of the density of defects n). It was
shown that the n-dependence of the residual resistivity deviates from the linear law over a wide
range of defect densities unlike in the case of dislocations. In real crystals, however, wedge
and twist disclinations are combined in groups (dipoles, multipoles, loops) forming screened
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systems [7]. A qualitative analysis of the resistivity of metals caused by electron scattering
due to the static strain fields of wedge disclination dipoles (WDDs) (both biaxial and uniaxial
types) has been presented in [8]. At the same time, the main question of whether disclination
dipoles and disclination loops (widely present in materials with rotational plasticity) affect
electron mobility in semiconductors (like dislocations) still remains to be answered.

As a first step, in this paper we study the problem of phonon scattering by biaxial
WDDs of finite length and by circular wedge disclination loops (WDLs) in the framework
of the deformation potential approach [2, 9]. These defects are the simplest screened systems
among numerous extended defects in materials with rotational plasticity. The interest in finite
WDDs has been aroused by the fact that they can be part of more realistic objects in crystals
(e.g. rectangular disclination loops). In turn, disclination loops are strongly screened systems
which seem to be the most commonly encountered elements in the majority of real media.
Moreover, the long-range strain fields caused by WDDs were found to match those from finite
walls of edge dislocations (see, e.g., [10]), while low-angle grain boundaries can be described
as dislocation walls. For this reason, the WDD-based model can be applied to interpret the
recent experiments [11] on glass-like thermal transport in polycrystalline semiconductors.
Note that the problem of phonon scattering due to infinite WDDs has been considered in [10].

2. Model

A mean free path of phonons of frequency ω scattered by the potential associated with a
static deformation of a lattice caused by WDDs is calculated within the generally accepted
deformation potential approach (see, e.g., [9]). An effective perturbation energy of phonons
due to the strain fields caused by WDDs or circular WDLs is

U(r) = h̄ωγ Tr Ei j , (1)

where Tr Ei j is the trace of the strain tensor due to WDDs or WDLs, h̄ω is the phonon energy,
γ is the Grüneisen constant.

Consider the geometry for WDDs and WDLs, where disclination lines of finite length 2d
of WDDs are directed along the z-axis with coordinates (±L, 0) in z = 0 plane (2L is the
dipole separation). The rotation vectors (Frank vectors) are Ω1 = �ez and Ω2 = −�ez for
disclinations (−L, 0) and (L, 0), respectively; a circular wedge loop of radius R is located in
the z = 0 plane with a rotation vector Ω = �ey.

By using the explicit form of the strain fields of WDDs and WDLs (which can be taken
from [12, 13]) in equation (1), one can calculate the matrix scattering element in the Born
approximation [9, 10]. The results are as follows for WDDs:

〈k|U(r)|k′〉 = 2A

V

sin(qzd)

qz

×
∫ ∞

0
r dr

∫ 2π

0
dφ (K0(qzρ−) − K0(qzρ+)) exp[iq⊥r cos(φ − α)], (2)

and for WDLs:

〈k|U(r)|k′〉 = −4π iR2 cos α
A

V

q⊥
q2

⊥ + q2
z

J2(q⊥ R), (3)

where A = h̄kvsγ ν(1 − 2σ)/(1 − σ), ν = �/2π , σ is the Poisson constant, K0(x) and
J2(x) are the modified Bessel function and the Bessel function of the first kind, respectively,
ρ2± = r2 ± 2r L cos φ + L2, α defines the angle between q⊥ = (qx, qy) and the x-axis.
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Figure 1. The phonon mean free path lW DD due to scattering on static strain fields of finite
biaxial WDDs as a function of frequency for d = ∞ (dotted curve), d = 10−4 cm (solid curve),
d = 10−5 cm (dotted–dashed curve), d = 10−6 cm (dashed curve). The parameter set used is:
L = 10−7 cm, ν = 0.1, nd = 2 × 1011 cm−3, vs = 4 × 105 cm s−1, B = 4 × 10−3.

We consider the elastic scattering with q = |q| = |k − k′| = 2k sin(θ/2), where θ is the
scattering angle. In this case, from the general expression for the phonon mean free path (see,
e.g., [9]), one can get

l−1
k = V Nk

(2π h̄vs)2

∫ 2π

0
dφ′

∫ ∞

−∞
dk ′

z |〈k|U(r)|k′〉|2(1 − cos θ), (4)

where N is the number of identical defects (WDDs or WDLs), vs = ω/k is the sound
velocity. The bar in equation (4) denotes the averaging over α in equations (2) and (3).
Assuming that a phonon is incident along the kx-axis (k = kex), and using the cylindrical
coordinates in the momentum space (k⊥, φ′, kz), one can express θ in terms of φ′ as
1 − cos θ = 1 − √

1 − (k ′
z/k)2 cos φ′.

Combining equations (2) and (3) (after averaging over α) with equation (4), we find the
mean free paths for WDDs and WDLs:

l−1
W DD = 4nd B

k2

∫ 1

0
dz

sin2(zkd)

z2

∫ 2π

0

dφ′

1 − √
1 − z2

×
(

1 − J0

(
2Lk

√
2 − z2 − 2

√
1 − z2 cos φ′

))
, (5)

l−1
W DL = nd R4k2 Bπ2

∫ 1

0
dz

∫ 2π

0
dφ′ 1 − √

1 − z2 cos φ′ − z2/2

1 − √
1 − z2 cos φ′

× J 2
2

(
Rk

√
2 − z2 − 2

√
1 − z2 cos φ′

)
, (6)

where z = k ′
z/k, B = (νγ )2(1 − 2σ)2/(1 − σ)2, nd = N/V is the total density of defects

in a sample. Figures 1 and 2 illustrate the dependences of lk calculated numerically from
equations (5) and (6) for WDDs and WDLs, respectively. One can clearly see the existence of
three distinct regimes of scattering in the case of WDDs, and two regimes for circular WDLs
over a wide range of frequencies.

To calculate κ with lk from equations (5) and (6) we use the well-known kinetic formula

κ = k4
B T 3

2π2h̄3v2
s

∫ θ/T

0

x4ex

(ex − 1)2
l(x) dx, (7)
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Figure 2. The phonon mean free path lW DL due to scattering on static strain fields of circular WDLs
as a function of reduced wavevector k/kD for the following parameters: R = L = 2 × 10−6 cm,
ν = 0.1, vs = 4 × 105 cm s−1. The dashed curve represents the mean free path for uniaxial
disclination dipoles.

where x = h̄kvs/kB T , � = h̄ωmax/kB , and the specific heat capacity is chosen in the standard
Debye form. We have restricted ourselves to considering thermal phonons with T 	 �, where
defects are of most importance [14].

3. Results and discussion

In our previous paper [10], where equation (5) was analysed in the limit d → ∞, we showed that
a change in behaviour of lW DD occurs when λ ∼ 2L. It was found that for long wavelengths,
lW DD ∼ k−1, while for λ < L, lk → constant. For finite WDDs, there is an additional linear
parameter, which is a dipole length 2d . The analysis of equation (5) shows that the second
crossover at low temperatures occurs due to appearance of two regimes of scattering: kd � 1
and kd � 1. Thus, for finite WDDs we can distinguish the following regimes of scattering:

(i) the high-frequency limit kd � 1 and kL � 1 which leads to lk → constant;
(ii) kd � 1 but kL � 1, producing lk ∼ k−1; and finally

(iii) for both kd � 1 and kL � 1, we have lk ∼ k−2 at low frequencies.

In the special case of d = L, only two regimes (with lk ∼ k−2 and lk → constant) are
realized.

In contrast to the case for WDDs, for WDLs we have only a linear parameter R, and,
as the result, two regimes of scattering: k R � 1 and k R � 1. In the long-wavelength limit
k R � 1, the mean free path lW DL increases even more sharply than lk for the uniaxial dipole
(lk ∼ k−5) and for a point impurity (lk ∼ k−4) (see figure 2). From equation (6) in the limit
k → 0, we obtain lk ∼ k−6. Thus, a circular WDL is a more self-screened system compared
to disclination dipoles (especially to the case considered here of biaxial WDDs whose large
strain fields behave like 1/r ). In the opposite limit of short waves (k R � 1), the phonon
scattering due to WDLs behaves like that for edge dislocations where lk ∼ k−1. According
to equation (7), the above-mentioned behaviour of lk for finite WDDs results in an extra low-
temperature regime with κ ∼ T (T < 1 K; see figure 3), in addition to κ ∼ T 2 and κ ∼ T 3

regimes.
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κ

Figure 3. Thermal conductivity versus temperature calculated according to (7) with lW DD from (5)
for d = ∞ (dotted curve), d = 10−4 cm (solid curve), d = 10−5 cm (long-dashed curve),
d = 10−6 cm (dashed curve). The parameter set is the same as in figure 1; � = 350 K.
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Figure 4. Thermal conductivity versus temperature calculated according to (7) with lW DL from (6).
The parameter set is the same as in figure 2; � = 350 K. The curves calculated for a dislocation,
uniaxial disclination dipole, and point impurity are depicted for comparison.

The dislocation-like behaviour (κ ∼ T 2) takes place for circular WDLs as well as for
biaxial WDDs, and infinite uniaxial dipoles above some T ∗ which is the point of the minimum
in κ(T ) (see figure 4). This behaviour can be explained by an increase in the number of short-
wave phonons involved in the local heat transfer from one phonon to another. This process
proceeds more rapidly than the phonon scattering by the static strain fields of circular WDLs
(or both kinds of WDD), which exhibits a dislocation nature. When T < T ∗, κ increases
drastically (as κ ∼ T −3) with T decreasing (κ ∼ T −2 in the case of uniaxial WDDs). This
rise of κ corresponds to the increase in the mean free path (lk ∼ k−6 when k → 0) which
is the result of the strong localized strain fields near the core of circular WDLs or uniaxial
WDDs. Near T ∗, phonons with wavelength comparable to the characteristic size of the defect
(k R ∼ 1) are predominantly excited, leading to the strong scattering at the boundary of the
defect.
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To summarize, in contrast to [8, 10], where infinite biaxial WDDs have been considered,
this paper describes a study of the finite biaxial WDD-induced as well as circular WDL-
induced phonon scattering within the deformation potential approach. The results obtained
have a clear physical meaning. Indeed, both defects have physical linear parameters (2L and
d for WDDs, and R for WDLs) which govern the character of the phonon scattering. A strong
phonon scattering due to the strain fields of these defects appears when λ ∼ 2L, d , and R. The
observed behaviour of the thermal conductivity κ is unique and can serve as indirect evidence
of the existence of circular WDLs and WDDs in semiconducting materials. Note that for real
materials containing these defects, the situation can be somewhat different due to the existence
of other sources of scattering (e.g. boundary scattering, phonon–phonon Umklapp processes).
Calculations of κ(T ) accounting for other sources of scattering will be performed in the near
future.
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